
INTELLIGENT HUMAN + ROBOT WORK CELL SIMULATION AND ORCHESTRATION

Problem Statement

through a work cell simulation

agents

Orchestration, Action, and Deployment Layers

Orchestration Layer (Decision-Making)

- **Role**: Determines what actions should be performed, by whom, and when
- **Components:** Paranet, Paracord

Action Layer (Execution)

- **Role:** Executes specified tasks and returns a status response
- Code Abstraction: Actors can use Python, Rust, SQL, etc. through "Skills" written in Paraflow configuration files

Deployment Layer (Docker Integration)

- **Role:** Packages all software dependencies
- **Resource Management:** Partitions the required resources for both layers

ELECTRICAL & COMPUTER ENGINEERING

UNIVERSITY of WASHINGTON

Top-Level System Architecture

Par	acord	Inter
_		
×	🔅 Overview	6
°.	Search	
+	¢°paranode	
	¢° franka_1	Details Versions
	¢° franka_2	ID: Spot_1
	¢° franka_3	Name: Spot_1
	¢° inspect	Type: Agent
	Root user	Created: May 9, 2025
	¢° spot_1	•
	¢° spot_2	Skills Version 1.0.0
	¢° spot_3	SKIIIS Version 1.0.0
		SI
		Action
		Goto

Implementation

How We Successfully Implemented the Simulation • **Omniverse Simulation:** programmed in Python, leveraging IsaacSim API

- **App.py:** the main entry point, launching the Isaac Sim environment, instantiating and registering actors from Paraflow definitions, and establishing a connection to the Paracord Interface.
- Actors Directory: Paraflow files where we defined each actor's configuration, including their available skills and tasks
- Warehouse Directory: IsaacSim Python scripts using robotic controllers like RMPFlow to define robot behavior and movement, translating skill requests into low-level control actions

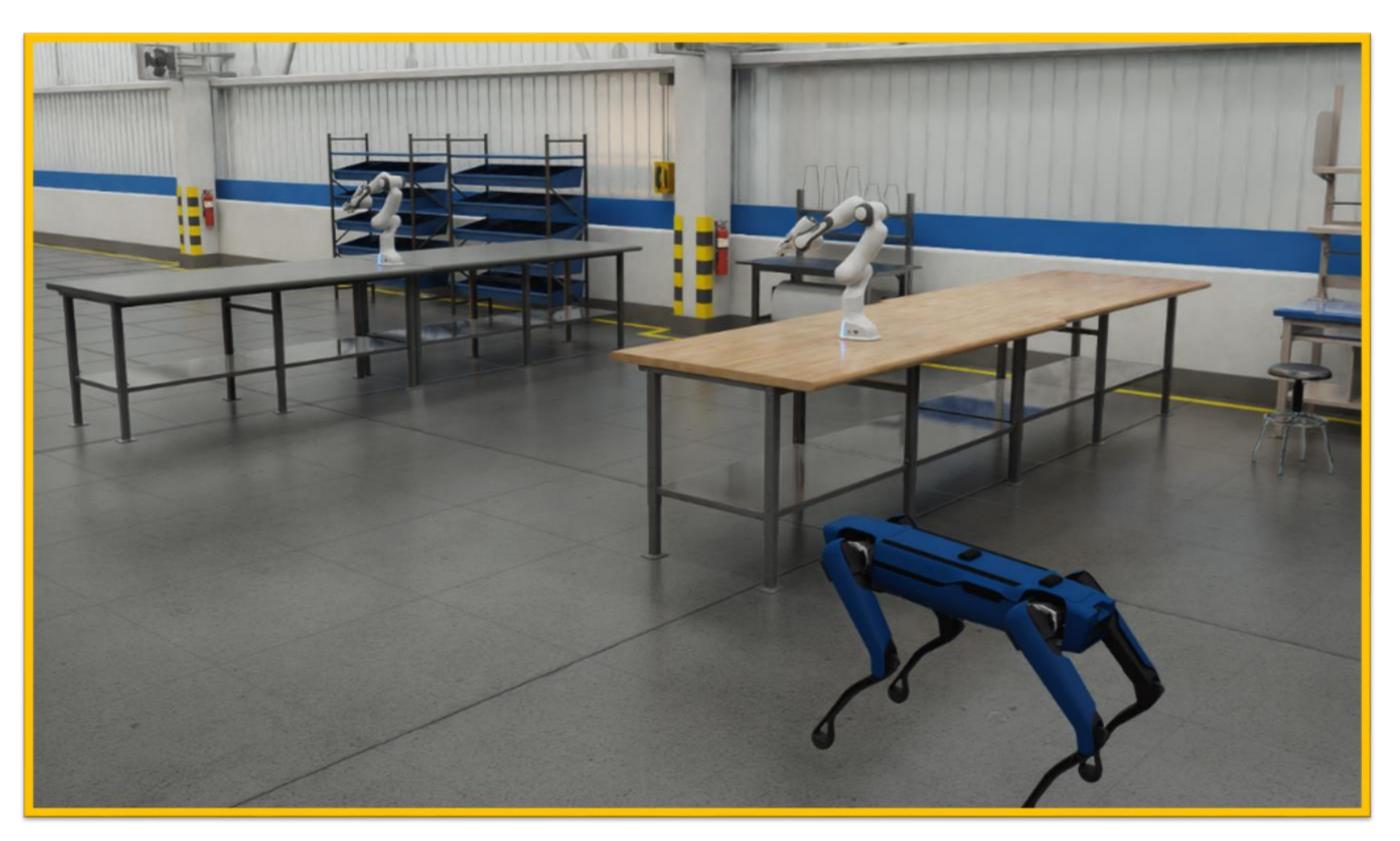
MENTORS: JIM HARDING, JOE LUI, JOHN RAITI **SPONSORS: Otonoma, Accenture**

Simulation Environme							
Runtime Environment							
Docker Containter	Simulation Enviroment						
Paracord (Web Interface)	Nvidia IssacSim						
Agent Interaction	Work-cell Simulation						

rfa	ace							
(a) Ledger			ବ୍ଧ Actor Hub			©	Panels	👗 root
		F	Root Status: Co	onnected \checkmark				
sions								
								•
, 2025 At 01:24	25 PM PDT							
1.0.0								ŀ
Spot	Action Get State	Spot	Action Get Position	Spot	Action Get Target	Spot		

and Paracord SDK to bridge the simulation filles with Paracord

Work Cell Environment


response to system events.

Actors

- 3 Franka Arms
- 2 SPOT Robots
- 1 Human Operator

Scenario

 One Franka Arm is disabled • Two SPOT robots are available to perform the inspections upon request

Future Work, References, & Acknowledgements

Future of the Project

- Transition from simulation to deployment on physical robotic platforms without need for any code rewriting
- Scale up the work cell for more complex tasks and environments
- Conduct iterative hardware testing to refine system performance
- Adapt the orchestration framework for use in non-industrial domains

Work Cell Simulation

• Simulated factory environment where multiple robots collaborate with a human user to perform orchestrated tasks, demonstrating intelligent coordination and

User Interaction

 Inspection requested from Paracord Interface

• Franka Arm is restored and waves to

System Response

confirm

- Paranet selects closest SPOT to Franka Arm
- SPOT inspects the arm
- SPOT returns to home location

Acknowledgements

• We would like to extend our sincere thanks to our additional industry support team members: Paul Steckler, Mike Galvin, Phillip Quinn, Brian Schleckser, and more.

References:

[1] "The Paranet," Otonoma.com, 2025. https://docs.paranet.otonoma.com/